

Predicting H1N1 Vaccination

Predict how likely individuals are to receive their H1N1 vaccination.

Prepared by : Ang Su Yiin Date : 15 November 2020

Content

Overview and objective

Data preparation and exploration

Type of results

Basis of model assessment

Selected model

Model Improvement

Recommendations

PREPARED BY ANG SU YIIN

Objective and approach

 To build a predictive model to predict how likely individuals are to receive their H1N1 vaccination based on individuals' demographics and opinions on vaccine.

Data preparation and exploration

4 type of results False positive is most detrimental

		Outcome (P	Predicted)	
		0 – Not vaccinated	1 - Vaccinated	
Target	0 – Not vaccinated	True Negative	False Positive	
(Actual)		- Actual: Not Vaccinated	- Actual: Not Vaccinated	
		- Predicted: Not Vaccinated	- Predicted: Vaccinated	
	1 – Vaccinated	False Negative	True Positive	
		- Actual: Vaccinated	- Actual: Vaccinated	
		- Predicted: Not Vaccinated	- Predicted: Vaccinated	

Basis of our model assessment

Selected model – Recursive Partitioning Model

Attributes	Model results		
True Positive	1,048		
False Positive	482		
True Negative	5828		
False Negative	655		
Misclassification	14.2%		
Negative Predicted Value	89.9%		
True Negative Rate	92.4%		

<u>Selected model</u>: Recursive Partitioning with 5 branches

Results of assessment:

- 3th best misclassification rate
- Highest True Negative Rate
- ROC Curve of 0.837 (strong model)

Model improvement – True Negative Rate can be improved using different cut off values

Model Improvement: Cutoff Comparison

	Attributes	No	Cutoff	Cutoff			
		Cutoff	0.62	0.79		The most detrimental	
r l	True Positive	1047	558	495		cases are the False Positive: Wrongly	
	False Positive	482	219	166			
	True Negative	5828	6092	6145		predicted to be	
	False Negative	655	1144	1207		not vaccinated	
	Misclassification	14.2%	17%	17.1%			
	Negative					Maximise True Negative	
	Predicted Value	89.9%	84.2%	83.6%		would reduce False	
í	True Negative	92.4%	96.5%	97.4%		Positive, but increase	
	Rate					False Negative	

Recommendations

Improve data quality

- Reduce missing data
- > Collect more relevant data that would be good predictors for the prediction model
- Perform **cost-benefit analysis** of different cut off values selecting a specific cut off value would largely depends on resource available and cost associated with investigation.
- Perform **further analysis** (i.e clustering analysis) on predicted unvaccinated individuals to assess the best and most efficient way of incentivising these individuals to get vaccinated.